Project description
Harnessing Rydberg slow-light polaritons for quantum science breakthroughs
Strong photon interactions are ideal for generating non-classical states of light and preparing correlated quantum states. Rydberg slow-light polaritons (excited atomic states propagating slowly through a medium) show potential for achieving this goal, with recent experiments demonstrating strong photon interactions. Funded by the European Research Council, the SIRPOL project aims to develop Rydberg slow-light polaritons to generate strongly interacting quantum many-body states using microscopic analysis and tools from condensed matter physics. Project activities will focus on generating non-classical states such as deterministic single photon sources and Schrödinger cat states, assessing their potential in quantum information and technology. Project results will improve understanding of energy dissipation and (non-)equilibrium dynamics in quantum many-body systems.
Objective
A fundamental property of optical photons is their extremely weak interactions, which can be ignored for all practical purposes and applications. This phenomena forms the basis for our understanding of light and is at the heart for the rich variety of tools available to manipulate and control optical beams. On the other hand, a controlled and strong interaction between individual photons would be ideal to generate non-classical states of light, prepare correlated quantum states of photons, and harvest quantum mechanics as a new resource for future technology. Rydberg slow light polaritons have recently emerged as a promising candidate towards this goal, and first experiments have demonstrated a strong interaction between individual photons. The aim of this project is to develop and advance the research field of Rydberg slow light polaritons with the ultimate goal to generate strongly interacting quantum many-body states with photons. The theoretical analysis is based on a microscopic description of the Rydberg polaritons in an atomic ensemble, and combines well established tools from condensed matter physics for solving quantum many-body systems, as well as the inclusion of dissipation in this non-equilibrium problem. The goals of the present project addresses questions on the optimal generation of non-classical states of light such as deterministic single photon sources and Schrödinger cat states of photons, as well as assess their potential for application in quantum information and quantum technology. In addition, we will shed light on the role of dissipation in this quantum many-body system, and analyze potential problems and fundamental limitations of Rydberg polaritons, as well as address questions on equilibration and non-equilibrium dynamics. A special focus will be on the generation of quantum many-body states of photons with topological properties, and explore novel applications of photonic states with topological properties.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences condensed matter physics
- natural sciences physical sciences quantum physics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
70174 Stuttgart
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.