Skip to main content
European Commission logo print header

Higgs bundles: Supersymmetric Gauge Theories and Geometry

Objetivo

String theory provides a unified description of particle physics and gravity, within a consistent theory of quantum gravity. The goal of this research is to develop both the phenomenological implications as well as conceptual foundations of string theory and its non-perturbative completions, M- and F-theory. Both, seemingly independent, questions are deeply connected to a mathematical structure, the Higgs bundle, which characterizes supersymmetric vacua of dimensionally reduced gauge theories, and insights into the moduli space of Higgs bundles will result in a fruitful cross-connection between these subjects.
For string theory to engage in a meaningful dialog with particle physics, it is paramount to gain a universal understanding of the low energy effective theories that can arise from it. Building on the success of studying F-theory vacua in terms of Higgs bundles, we propose to develop the Higgs bundle approach for M-theory on G2-manifolds, leading to a universal characterization of the low energy physics. Methods developed for Higgs bundles of d = 3 N = 2 theories obtained from M5-branes on three-manifolds will be used in this process. Associated to each Higgs bundle is a local G2 manifold and we propose a way (using new results in geometry) to construct compact G2 spaces associated to these, which manifestly ensure the phenomenological soundness of the compactifications.
Higgs bundles have recently also played a key role in studying the compactifications of the M5-brane in M-theory. We propose and develop a new duality between a d = 4 theory on a four-manifold X4 and a d = 2, N = (2,0) supersymmetric gauge theory on a two-sphere S2, obtained by considering the M5-brane theory on X4xS2. The supersymmetric vacua have a characterization in terms of Higgs bundles, which can be studied with tools developed for F- theory Higgs bundles on four-manifolds. Furthermore we propose a concrete approach to derive this duality from first principles.

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Aportación neta de la UEn
€ 1 794 562,00
Dirección
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Reino Unido

Ver en el mapa

Región
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 794 562,00

Beneficiarios (2)