Objective
Micro Combined Heat and Power (mCHP) systems are a perfect addition to stabilize the electricity grid in the increased presence of volatile renewable sources. Due to their efficient generation and local use of heat and electricity, their fuel saving- and CO2 reduction potential is tremendous. In spite of great interest of the market and policy-makers, currently available mCHP systems suffer from limited life, high investment and very high maintenance cost, making them too expensive for serious market uptake.
MTT solves this problem with the EnerTwin, a mCHP system based on a micro gas turbine. The EnerTwin uses commercial off-the-shelf components resulting in low investment cost. Gas turbines are known for low-maintenance, high power density (small size) and long life. MTT uses automotive turbochargers as key components of the turbine: these are produced in millions and contribute to the low cost and high reliability of the EnerTwin. Gas turbines are inherently insensitive to varying fuel compositions facilitating use of various grades of natural gas.
Currently, the EnerTwin is at TLR 7: 19 systems have been deployed in 1st-stage field tests at client locations since mid 2013. Besides the field-trial units, MTT has already sold 500 commercial EnerTwins, which promises an excellent commercial market perspective, while concrete contracts are under negotiation for high volumes for Canadian- and Chinese markets.
The main objective of this project is the readiness for commercialisation of the EnerTwin. MTT and its industrial project partners will improve the mCHP to meet future CE and ECO Design requirements. Together with these partners, MTT will work on component and system optimisation for reliability and large-volume manufacturing. Additional field-test units will be deployed to test use cases and validate improvements. By the end of the project MTT expects to close at least 5.000 pre-orders for EnerTwins, resulting in creating over 600 qualified job positions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power generation combined heat and power
- engineering and technology environmental engineering energy and fuels fossil energy natural gas
- engineering and technology environmental engineering energy and fuels energy conversion
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EC - Horizon 2020 Framework Programme
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3. - PRIORITY 'Societal challenges
See all projects funded under this programme -
H2020-EU.2. - PRIORITY 'Industrial leadership'
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FTIPilot-2015-1
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
36015 SCHIO
Italy
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.