Objective
The ITHERLAB project investigates the influence of in-situ (present state in the geological subsurface) pressure and temperature on rock thermal properties (thermal conductivity and thermal diffusivity) as one of the essential thermal properties in the evaluation of the Earth thermal field. The ITHERLAB project will establish mathematic formulations for p/T dependence of both parameters and demonstrate whether micro-structural effects affect these relations for different rock types. For that purpose, an innovative laboratory device will be developed and pilot-tested allowing for dry and saturated rocks measurements of thermal conductivity and thermal diffusivity at pressures and temperatures that are simultaneously raised to values up to 200 MPa and 200°C, respectively. These are the conditions for depths (to approx. 7 km), which are of interest in the use of Earth resources (such as geothermal energy, hydro-carbons, storage of energy or waste). Currently, no laboratory standard procedure exists for this task. Precise knowledge of reliable in-situ thermal rock properties and derived thermal parameters (e.g. heat-flow density) is in-dispensable for understanding the Earth’s subsurface thermal structure and heat budget. Heat mainly drives geody-namic processes (e.g. mantle convection, plate tectonics). Practical implications for the society are arising for exam-ple from the extraction of the Earth’s heat for heating purposes or electricity generation and from the subsurface storage of heat to compensate different seasonal energy demands - techniques that can help to secure and diversify Europe’s energy supply. Moreover, knowledge and methods provided by the ITHERLAB project are paramount for the planning, management and realization of any scientific and industrial subsurface application, which is affected technologically or economically by the subsurface thermal field (temperature and heat budget).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- natural sciences chemical sciences organic chemistry hydrocarbons
- natural sciences earth and related environmental sciences geology seismology plate tectonics
- natural sciences earth and related environmental sciences geology mineralogy
- engineering and technology environmental engineering energy and fuels renewable energy geothermal energy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
14473 POTSDAM
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.