Objective
WHAT: MIRNANO project is an interdisciplinary nanotechnology-driven program in which the fields of nanomaterial and DNA functional engineering are merged to develop innovative nanodevices for pluripotent targeted cancer treatment. The leading idea is to focus on aberrantly expressed microRNAs (miRNAs) as targets of the proposed therapeutic care, which allows for tailoring of the action to the genetic expression of a specific tumor.
WHY: Current chemotherapy still relies on an untargeted paradigm, which suffers from poisoning side effects and lacks a focused action over the tumor area. Molecular biology has definitely demonstrated the pivotal role played by microRNAs in cancer development and metastasis progression, therefore anti-miR therapy is the ultimate strategy to bet on. Working at the nanoscale will allow to achieve advanced nanomaterials that can home to the specific tumor tissue and silence the aberrantly expressed miRNAs producing a downstream therapeutic effect.
HOW: The proposed program is a very challenging project that aims to provide a groundbreaking contribution to cancer treatment. Nanomaterial science is primarily involved in this project. Porous silicon nanoparticles are intended to be used as luminescent, biodegradable, and biocompatible platforms for producing the anti-miR nanodevices. Functionalization with tumor-penetrating peptides will allow to achieve homing of the particles to the site of action, thus specifically targeting the tumor environment. Anti-miR nucleic acids, carried and delivered through the silicon nanocarriers, will ensure knockdown of target miRNAs, inducing downstream suppression of tumor growth. A complementary engineering of the anti-miR nucleic acid unit through rational design of advanced switching structures will allow for developing programmed miR-responsive tools, which are meant to reinforce the primary anti-miR effect with an extra-therapeutic action.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences biochemistry biomolecules nucleic acids
- medical and health sciences medical biotechnology tissue engineering
- medical and health sciences medical biotechnology nanomedicine
- medical and health sciences clinical medicine oncology
- medical and health sciences health sciences personalized medicine
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-GF - Global Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00133 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.