Objective
It is reported that data centers today consume up to 3 percent of the global electricity usage. This is expected to increase in the upcoming years as the amount of data processed in the cloud increases substantially. An effective way for data centers to achieve better performance and energy efficiency is to perform computation on specialized processing elements. Field programmable gate arrays (FPGAs) enable customization of logic after manufacturing to achieve better energy efficiency compared to general purpose processors. Today, prominent hardware and software companies are investing in data center solutions that integrate FPGAs with CPUs, and significant energy consumption and performance improvements have been demonstrated for several data center applications. However, the main barrier for wide spread adoption of FGPAs in data centers is the cost of programming, which typically requires months of development time by hardware designers. This makes it unaffordable for small-to-medium software companies to effectively utilize the available FPGAs. The purpose of this project is to lower this barrier for emerging graph analytics applications for knowledge discovery and machine learning. The basic idea is to use an abstract interface that allows a domain expert to describe an application as a set of serial functions defined per vertex and/or edge. We propose a customizable implementation template that automatically maps the abstract user functions to massively parallel FPGA implementations. The proposed template will hide from users many low level implementation details such as parallelization, pipelining, synchronization, memory access optimization, race and deadlock avoidance, etc. This will help bridge the gap between high level application descriptions and costly hardware implementations. Our preliminary architecture simulations have shown that the proposed graph processors can achieve significantly better energy efficiency than general purpose processors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- natural sciences computer and information sciences artificial intelligence machine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
06800 Bilkent Ankara
Türkiye
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.