Objective
DNA polymerases (DNA Pols) make various decisions during DNA replication. Decisions regarding nucleotide selection, lesion bypass and how to respond to replication errors are a few important examples. During replication, DNA Pols can synthesize DNA at remarkable rates, e.g. 1,000 bp/s for E. Coli DNA Pol III. However, errors can be introduced during replication, resulting in a terminal DNA mismatch. Mismatches can then be sensed and removed by action of the 3’ to 5’ exonuclease activity of the DNA Pol. How DNA Pols can sense mismatches to initiate proofreading and how the primer strand migrates into the exonuclease domain, often a distance of 30 Å, is the focus of this proposal. Moreover, this research aims to understand mechanisms of proofreading in higher complexity DNA Pol assemblies at single-molecule resolution. Proofreading will be studied with the model enzyme E. Coli DNA Pol III, consisting of separate protein subunits that assemble to form a higher order complex, namely the polymerase, exonuclease and the β2-clamp, which is a processivity factor that encircles the DNA and increases the affinity of the polymerase to the DNA. The proposed work will employ single-molecule FRET in order to evaluate proofreading dynamics at high spatial and temporal resolution. Three main objectives will be performed in order to understand (1) how DNA mismatches initiate proofreading (2) how mutations within the exonuclease domain affect proofreading and (3) how DNA lesions can influence proofreading as a function of position within the DNA template. These objectives will be achieved with a single-molecule FRET assay containing fluorescently labelled DNA to monitor proofreading dynamics in real time. This work will shift the knowledge frontier by advancing our understanding of proofreading during DNA replication in order to better realise the relationship between DNA mutations and the development of human diseases like cancer.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics DNA
- natural sciences biological sciences genetics mutation
- medical and health sciences clinical medicine oncology
- natural sciences chemical sciences organic chemistry amines
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
SW7 2AZ London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.