Objective
Group rings form one of the most significant classes of rings. They encode group and ring theoretical information. The study of the group of units of integral group rings was initiated in the 1940's by Higman in connection with the Isomorphism Problem. One of the main problems still unsolved is the description of its torsion units of the the torsion elements of the group V(ZG) formed by the units of augmentation 1. The Zassenhaus Conjecture, possed in the 1960's by Hans Zassenhaus, predicts that all the torsion units of V(ZG) are conjugate in the rational group algebra of the elements of G. This has been proved for some classes of groups, as for example, nilpotent or cyclic-by-abelian groups and for some special groups. A weaker conjecture stablishes that the orders of the torsion units of V(ZG) and G are the same, or the even weaker Prime Conjecture which states that V(ZG) and G have the same prime graph. The aim of this proposal is to make significant contributions on this questions. More precisely, we will concentrate in studying the above questions for G metabelian and for some series of simple groups as, for example, the projective linear groups. We intent to develope new techniques which surpasses some of the obstacles founded using the existing methods as for example the HeLP Method. Some recent progress obtained recently by the applying researcher, as the Lattice Method introduced in his Ph.D. Thesis and a software developed in cooperation with A. Bächle implementing the HeLP Method, would be very useful to obtain the goals of the project.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- natural sciences computer and information sciences computer security cryptography
- natural sciences mathematics pure mathematics arithmetics
- natural sciences mathematics pure mathematics algebra
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
30003 Murcia
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.