Objective
The developing neocortex consists of two major neuronal subtypes–pyramidal neurons and interneurons. These two subtypes come together in the cortical plate, forming cortical circuits that can integrate and respond to external and internal stimuli. Despite recent advancement in the research on cortical networks of the developing brain, the mechanism involved in cortical circuit assembly remains relatively unexplored. This project aims to identify the sequence of events and factors involved in cortical circuit assembly in the developing mouse brain. As such, this project can be broadly divided into three main parts namely lamination, synaptogenesis and maturation of the MGE interneurons specifically. Currently, the exact mechanisms that govern MGE interneurons are still unknown except that it may involve cues that are produced by the pyramidal neurons. Therefore, we aim to use existing transcriptome data of the different neuronal layers coupled with the acquisition of the early- and late- born MGE interneurons transcriptome in order to identify the receptor-ligand pair that is involved in the specific lamination of MGE interneuron. We also aim to understand the sequence of events that occur during synaptogenesis and maturation of MGE interneurons. To achieve this, we will be performing live imaging on organotypic brain slices of sparsely labeled MGE interneurons and by selectively killing specific classes of interneurons in order to determine the effect of these cells on the maturation of the parvalbumin-expressing interneuron. Altogether, this proposed project will give a better insights into the factors and mechanisms underlying cortical circuit assembly in the developing brain and will pave the way for a better understanding into the aetiology of certain neurodevelopmental disorders.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological sciencesneurobiology
- medical and health sciencesbasic medicineneurologyepilepsy
- medical and health sciencesclinical medicinepsychiatryschizophrenia
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Funding Scheme
MSCA-IF-EF-ST - Standard EFCoordinator
WC2R 2LS London
United Kingdom