Objective
Energy storage technologies have long been a subject of great interest to both academia and industry. The aim of this project is to develop a novel, cost effective and high performance Latent Heat Thermal Energy Storage System (LHTESS) for seasonal accumulation of solar energy in increased quantities. The major barrier for currently used Phase Change Materials (PCMs, organic and hydrated salts) is their very low heat conduction coefficient, low density, chemical instability and tendency to sub-cooling. Such inferior thermo-physical properties result in the LHTESS having large dimensions and not having a capacity to provide the necessary rate of heat re-charge and discharge, even with highly developed heat exchangers. The new approach to overcome the above issues is the deployment of low grade, eutectic low melting temperature metallic alloys (ELMTAs). The ELMTAs are currently produced for application in other areas and have not been actively considered for the thermal energy accumulation with the exception of very limited studies. Their heat conduction is two orders of magnitude greater than that of conventional PCMs, they are stable and provide the thermal storage capacity which is 2-3 times greater per unit of volume. The project consists of both theoretical and experimental investigations. A range of low grade ELMTAs for application in LHTESS will be selected and Differential Scanning Calorimetry will be used to measure their thermal properties. Thermal cycling tests of such alloys will be conducted. Numerical investigations of heat transfer and flow in the LHTESS with ELMTAs will be performed. Experimental studies of heat transfer and flow in a laboratory prototype of the LHTESS with ELMTAs will be conducted. As outcomes of investigations, dimensionless heat transfer correlations will be derived and design recommendations for a practical solar energy seasonal LHTESS with the low grade ELMTA will be produced for project industrial partner
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- natural sciences chemical sciences inorganic chemistry noble gases
- natural sciences computer and information sciences databases
- natural sciences chemical sciences analytical chemistry calorimetry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
NE1 8ST NEWCASTLE UPON TYNE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.