Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Vertical Transport and Photoresponse in van der Waals hybrid structures

Objective

Van der Waals (vdW) hybrid structures, new systems formed by stacking layers of two-dimensional crystals on top of each other, are a promising route towards the tailoring of material properties at will. Understanding the properties of individual layers and how they interact with each other to obtain the desired properties is the main focus of both experimental and theoretical research of the community working in this area. Due to the extreme high quality, atomically sharp, interfaces between different layers in vdW structures, lattice mismatch and the relative alignment between consecutive layers play a fundamental role in determining the properties of the vdW structure, governing the electronic coupling between different layers. Graphene – insulator/semiconductor – graphene vdW structures have recently received a lot of attention from the community, due to its potential for applications, having been shown to operate both as transistors and photodetectors. It is not clear however how device operation is affected by lattice mismatch effects. The aim of this project is to develop theory and models, both analytical and numerical, to describe the vertical current and photocurrent generation, both in the steady state and in the transient regime, of the vdW hybrid structures referred above. Special attention will be given to the effect of lattice mismatch and crystal-momentum conservation in the vertical current flow.
In the duration of this project, Bruno Amorim will work under the supervision of Prof. Eduardo V. Castro in the multidisciplinary environment provided by the Center of Physics and Engineering of Advanced Materials at Instituto Superior Técnico, in Portugal. This project will generate high impact results, useful in interpreting current and future experimental results and in guiding the design of new vdW devices. As such, this project will greatly contribute to the career development of the applicant.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

INSTITUTO SUPERIOR TECNICO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 148 635,60
Address
AVENIDA ROVISCO PAIS 1
1049 001 Lisboa
Portugal

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 148 635,60
My booklet 0 0