Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

REmineralisation, OPTIcs and Marine partIcle siZE

Objective

Remineralisation of the particulate matter that sinks from the surface to the deep ocean is a crucial component of the biological carbon pump, because it ultimately influences the Earth’s climate. Due to the difficulties to observe this process, however, little is known about the variability of mesopelagic (~200-1000 m) remineralisation. REOPTIMIZE aims to improve knowledge of mesopelagic remineralisation by exploiting – for the first time – time-series of optical proxies of particle size and oxygen consumption collected by autonomous robotic platforms (i.e. Bio-Argo floats). These new estimates of remineralisation, acquired at unprecedented spatial and temporal resolution, will improve our knowledge of the biological carbon pump and ultimately reduce uncertainties in current and future estimates of the ocean carbon budget.
REOPTIMIZE will combine models and field measurements. Field data from the Atlantic Meridional Transect cruises will be firstly exploited to extend current relationships between optical proxies and particle size from the ocean surface to the mesopelagic zone. Then, spectral light backscattering data acquired by a fleet of Bio-Argo floats in under-sampled oceanic areas will be converted to size-revolved carbon biomasses. These biomass estimates will then be combined with simultaneous oxygen consumption rates and analysed, by means of simple models of particle dynamics, to derive particle disaggregation rates in the mesopelagic. These inter-disciplinary and innovative activities will establish a two-way exchange of knowledge between the Researcher’s and the host institution and to enhance their European and international network of collaborators. Outcomes of REOPTIMIZE will have an impact on the European strategy for global ocean observations.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

PLYMOUTH MARINE LABORATORY LIMITED
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 195 454,80
Address
PROSPECT PLACE WEST HOE
PL1 3DH Plymouth
United Kingdom

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Region
South West (England) Devon Plymouth
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 195 454,80
My booklet 0 0