Skip to main content
An official website of the European Union An official EU website
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Bayesian Monte Carlo for Global Illumination

Objective

One of the most challenging problems in computer graphics (CG) is to synthesize physically-based realistic images given an accurate model of a virtual scene. Rendering a photo-realistic image requires solving the illumination integral which describes the light transport on a scene, and whose value is in general computed by resorting to numerical approximations
such as those based on Monte Carlo (MC) methods.

The quality of the approximation of those methods is strongly dependent on the samples placement and weighting. Therefore several works have focused on improving the purely random sampling used in classic MC techniques. In particular, a recent and innovative approach called Bayesian Monte Carlo (BMC) has been proven to greatly outperform classic MC methods due to its ability to incorporate prior knowledge which is then used for careful samples weighting and placement. This method was successfully applied in rendering by Brouillat et al. (2009) but only for diffuse materials. Recently, Marques et al. (2013) have generalized the application of BMC to non-diffuse materials.

These works have confirmed the potential of BMC for efficiently solving the rendering integral, making it a new trend in computer graphics. Nevertheless, the use of BMC in CG is still in an incipient phase and its application to more evolved and widely used rendering algorithms remains cumbersome.

We propose a research plan with a double objective: first, to develop an adaptive sampling strategy for BMC integration, where a new set of samples is used to further improve the approximation of the previous integral estimate. Second, to apply BMC to higher dimension problems such as path tracing, where the integration over all possible ray paths turns the approximation into a high-dimension integration problem, hence addressing the holy grail of the integration in light transport simulation: the curse of dimensionality.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Coordinator

UNIVERSIDAD POMPEU FABRA
Net EU contribution
€ 158 121,60
Address
PLACA DE LA MERCE, 10-12
08002 Barcelona
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 158 121,60
My booklet 0 0 Item