Objective
The microstructure evolution of metallic alloys undergoing thermomechanical loads involves strain hardening, dynamic recovery, recrystallisation and grain growth. Predicting such phenomena is crucial for the control and optimisation of the mechanical properties of final components. Phase field approaches are used to simulate the change in grain morphology, growth and coalescence induced by grain boundary and stored energies due to prior viscoplastic deformation. On the other hand, continuum crystal viscoplasticity theory is well-established for finite element simulations of the deformation of polycrystalline aggregates. Currently, phase field and crystal plasticity models are used separately or successively: the field of stored elastoplastic energy computed from the crystal plasticity model serves as the initial energy distribution in the phase field simulation of subsequent grain morphology evolution. The objective of the project is to strongly couple both approaches so as to simulate dynamic grain morphology evolution during deformation processes. Each theory, i.e. the phase field model and the continuum crystal plasticity approach, possesses an evolution equation for the crystal lattice orientation. An essential driving force for lattice rotation evolution is the orientation gradient, the lattice curvature, which is the primary constitutive variable of the Cosserat continuum theory. The Cosserat theory offers a unique way of reconciling both approaches. The results of finite element simulations based on this new theory will be compared to experimental results, namely lattice orientation maps and strain field measurements, available for aluminium and copper polycrystals. The proposed model is the missing link between the physical description of grain boundary motion and macroscopic recrystallisation models. Such a paradigm has not yet been proposed and will open new ways for the understanding of elementary recrystallisation mechanisms in polycrystals.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- agricultural sciences agriculture, forestry, and fisheries agriculture grains and oilseeds
- natural sciences physical sciences atomic physics
- natural sciences physical sciences optics microscopy
- natural sciences chemical sciences inorganic chemistry post-transition metals
- natural sciences mathematics applied mathematics numerical analysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75272 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.