Objective
The production of sustainable energy that generates a clear and net greenhouse gas saving is one of the main EU objectives. Nature provides with the most efficient energy infrastructures known today. A deeper understanding of photosynthetic systems, and how energy transfers within its different subunits would show us the way to efficient energy flow, opening the path to the fabrication of highly efficient solar cells and transmission networks.
The aim of the COMPLEX project is to provide insight to the energy conversion and transfer in complex molecular systems. We will develop and identify methods used in quantum mechanics, statistics and quantum information theory to model the energy transport in complex networks. Optimisation methods from mathematics and engineering will be applied to analyse biolological and artificially fabricated systems. Findings will be transfered to other related systems such as nano-engineered networks of nanofibers and polymers, which are designed for efficient transport with applications in organic solar cells and light-emitting devices and to further complex systems.
This breakthrough in the state-of-the-art in terms of understanding energy flow in complex networks will take place by applying and transferring the specialised knowledge of Dr. Mirta Rodriguez, a Physics Researcher back from a research career break and specialist in the field of complex quantum systems dynamics, through scientific leadership to the research team at ZIB, where the computational infrastructure and knowledge and will be available to the Fellow. Specialist knowledge in applied technologies and innovation management gained by the Felow during her career break from R&D in Physics, will ensure that the results attained within the COMPLEX project will not only remain as basic research. Providing the European energy sector proper understanding of the energy flow mechanisms in complex networks will be revolutionary for sustainable energy production and energy
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences quantum physics
- natural sciences physical sciences optics spectroscopy absorption spectroscopy
- natural sciences computer and information sciences artificial intelligence machine learning
- natural sciences mathematics applied mathematics numerical analysis
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
14195 Berlin Dahlem
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.