Objective
The classification of finite simple groups is often regarded as one of the major mathematical achievements of the 20th century. Its importance lies not only in the fundamental result, but also in the methodology and conceptual framework developed for its proof. Most intriguingly, it turned out that the structure of a finite group is closely connected to the structure of the p-local subgroups, i.e. the normalizers of non-trivial p-subgroups, for a suitably chosen prime p. Of particular importance is the prime 2. Even though the proof of the classification of finite simple groups is insightful in its major conceptual approach, it is extremely long and difficult in its details. Thus, it would be of great interest to obtain a simplified proof. Moreover, to gain the maximum benefit from the methods of the proof of the classification, it is highly desirable to work in a more general context which in particular allows also for applications in the modular representation theory of finite groups. Saturated fusion systems provide a conceptual framework for this and connect to important questions in homotopy theory. A program to find a new and better proof of the classification of finite simple groups through a classification of simple fusion systems at the prime 2 has been recently outlined by Aschbacher. Two parts of our proposal concern classification problems for fusion systems. Their significance lies not only in completing important cases in Aschbacher's program, but also in giving new insight into the relative abundance of exotic examples, i.e. fusion systems not induced by any finite group. In the third part we attack a major problem in the algebraic theory of fusion systems by defining an analogue in fusion systems of centralizers of subgroups of finite groups. This will simultaneously facilitate a classification of fusion systems in the spirit of Aschbacher's program, and lead to a combinatorial understanding of maps between classifying spaces of fusion systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- humanities history and archaeology history
- natural sciences mathematics pure mathematics topology
- natural sciences mathematics pure mathematics algebra
- natural sciences mathematics pure mathematics geometry
- natural sciences mathematics pure mathematics arithmetics prime numbers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
AB24 3FX Aberdeen
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.