Objective
‘VibraCoat’ is one of the brand names of Plasmatrix Materials AB and refers to a member of a family of multi-functional nanostructured metal matrix composites with elastic modulus comparable to metals, resilience comparable to rubbers, hardness comparable to ceramics and vibration damping comparable to polymers.
The proposal aims at commercialize the process technology and VibraCoat material for an integrated vibration damping solution for tooling systems used in manufacturing industry: tool holders and cutting insert supports (shims). At this stage, the developed VibraCoat material has an elastic modulus of 50 GPa, hardness of 2.5 GPa, resilience of 60% spring-back, loss factor of ~40% and withstand temperature up to 450°C. These properties make VibraCoat a unique candidate for absorbing shocks and vibration energy during machining as there are very few viable solutions in the harsh environment of machining.
The market for only shims to damp the cutting insert is enormous, as 650-800 million inserts are consumed every year in the Western World only. However, there is still a gap to bridge in order to enable the Plasmatrix to address this significant market opportunity. While the VibraCoat material has been synthesized and the process technology has been validated successfully at small scale and over a limited range, there is now a necessity to further develop the process and demonstrate that the process and concept can be up-scaled and extended to a variety of tooling systems. The verified and quantified data produced will allow Plasmatrix to develop and validate a business plan and associated marketing strategy. With this Plasmatrix will be able to commercially develop, exploit and service the market after the Feasibility Study ends.
Plasmatrix staff has excellent competence in the multidisciplinary field of plasma engineering, Atomic Additive Process (ADP) equipment design and manufacturing, ADP process control and optimization and material characterization.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences quantum physics
- engineering and technology materials engineering composites
- engineering and technology nanotechnology
- engineering and technology mechanical engineering manufacturing engineering subtractive manufacturing
- engineering and technology materials engineering ceramics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.2. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-1 - SME instrument phase 1
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SMEInst-2014-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
11428 Stockholm
Sweden
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.