Skip to main content
An official website of the European UnionAn official EU website
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Polymer brush sensing arrays for the identification of pathogens

Objective

Surfaces with the capacity for selective recognition of particular pathogens would offer great potential in a number of biomedical applications, including diagnostic devices. Mammalian cells are decorated with a carbohydrate-rich layer, the glycocalyx, which facilitates cellular recognition. Carbohydrate-binding proteins can interact with these sugar motifs to facilitate highly selective recognition, a strategy which is exploited by many viral and bacterial pathogens. Such species have evolved to display recognition units on their surfaces which may interact with considerable affinity with glycan structures displayed on cellular surfaces. This molecular recognition constitutes a key step in the processes of infection or toxicity, and is therefore an attractive target for the development of diagnostic devices. In this project, Dr Clare Mahon proposes to develop surface-tethered polymer brushes which will mimic the glycocalyx in terms of facilitating adhesion of pathogens. Through the incorporation of different fluorophores, the surfaces will be used to construct sensing arrays which will enable the rapid and cost-effective identification of water-borne pathogens and common respiratory pathogens.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

UNIVERSITY OF YORK
Net EU contribution
€ 258 107,40
Address
HESLINGTON
YO10 5DD York North Yorkshire
United Kingdom

See on map

Region
Yorkshire and the Humber North Yorkshire York
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 258 107,40

Partners (1)