Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Non-invasive decoding of cortical patterns induced by goal directed movement intentions and artificial sensory feedback in humans

Objective

In Europe estimated 300.000 people are suffering from a spinal cord injury (SCI) with 11.000 new injuries per year. The consequences of spinal cord injury are tremendous for these individuals. The loss of motor functions especially of the arm and grasping function – 40% are tetraplegics – leads to a life-long dependency on care givers and therefore to a dramatic decrease in quality of life in these often young individuals. With the help of neuroprostheses, grasp and elbow function can be substantially improved. However, remaining body movements often do not provide enough degrees of freedom to control the neuroprosthesis.
The ideal solution for voluntary control of an upper extremity neuroprosthesis would be to directly record motor commands from the corresponding cortical areas and convert them into control signals. This would realize a technical bypass around the interrupted nerve fiber tracts in the spinal cord.
A Brain-Computer Interface (BCI) transform mentally induced changes of brain signals into control signals and serve as an alternative human-machine interface. We showed first results in EEG-based control of a neuroprosthesis in several persons with SCI in the last decade, however, the control is still unnatural and cumbersome.
The objective of FEEL YOUR REACH is to develop a novel control framework that incorporates goal directed movement intention, movement decoding, error processing, processing of sensory feedback to allow a more natural control of a neuroprosthesis. To achieve this aim a goal directed movement decoder will be realized, and continuous error potential decoding will be included. Both will be finally joined together with an artificial kinesthetic sensory feedback display attached to the user. We hypothesize that with these mechanisms a user will be able to naturally control an neuroprosthesis with his/ her mind only.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-CoG

See all projects funded under this call

Host institution

TECHNISCHE UNIVERSITAET GRAZ
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 994 161,00
Address
RECHBAUERSTRASSE 12
8010 Graz
Austria

See on map

Region
Südösterreich Steiermark Graz
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 994 161,00

Beneficiaries (1)

My booklet 0 0