Project description
Understanding mechanisms of drug resistance in homologous recombination-deficient cancer
Drug resistance represents the major cause of death among cancer patients, including those with tumours that are defective in DNA repair by homologous recombination (HR). The emergence of resistance of primary or secondary tumours greatly minimises therapeutic options and reduces patient survival rates. The ERC-funded SYNVIA project will investigate therapy resistance by using genetically engineered mouse models for BRCA1- and BRCA2-deficient breast cancer. These models closely mimic human disease and the emerging tumours lack HR-directed DNA repair. Cancer cells in these models eventually acquire resistance to chemotherapy or targeted drug treatments, providing a unique opportunity to study therapy escape mechanisms. The combination of the project’s state-of-the-art approaches will provide new information to overcome therapy resistance in human cancer patients.
Objective
Although various effective anti-cancer drug treatments have become available over the last decades, drug resistance remains the major cause of death of cancer patients. Striking examples are patients with tumors that are defective in DNA repair by homologous recombination (HR). Despite initial responses to cancer therapy, resistance of primary or disseminated tumors eventually emerges, which minimizes therapeutic options and greatly reduces survival. The molecular mechanisms underlying this therapy escape are often poorly understood.
In the SYNVIA project I will address the problem of therapy escape by using powerful genetically engineered mouse models for BRCA1- and BRCA2-deficient breast cancer, which closely mimic the human disease. Due to the BRCA inactivation, the tumors that arise lack HR-directed DNA repair. Similar to the situation in cancer patients, we observe that cancer cells in these models eventually escape the deadly effects of chemotherapy or novel targeted drugs. Thus, these resistance models provide a unique opportunity to explore therapy escape mechanisms.
I propose an approach that will take the in vivo analysis of therapy resistance mechanisms to a new level. By synergizing the advantages of next generation sequencing with functional genetic screens in tractable model systems, I will explore novel mechanisms that cause resistance of HR-deficient cancers by the loss of another gene (“synthetic viability”). I provide evidence that new mechanisms of resistance can be identified with this approach. In an innovative step, I will generate genome-wide alterations using the revolutionizing CRISPR/Cas technology. Mutations will also be introduced into 3D tumor organoid cultures, as we found that these are more physiologically relevant. I am convinced that the combination of these state-of-the-art approaches will yield highly useful information for designing effective approaches to circumvent or reverse therapy escape in human cancer patients.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- social sciences sociology demography mortality
- natural sciences biological sciences genetics DNA
- medical and health sciences basic medicine pharmacology and pharmacy drug resistance
- medical and health sciences clinical medicine oncology breast cancer
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3012 Bern
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.