Objective
Title: Exponential Sums, Translation Invariance, and Applications.
Short Summary: Exponential sums are fundamental throughout (analytic) number theory, and are key to the robustness of applications in theoretical computer science, cryptography, and so on. They are the primary tool for testing equidistribution (apparent “randomness”) of number theoretic sequences. For a century, bounds for such sums of degree 3 or more have fallen far short of those conjectured to hold.
The landscape for exponential sums changed decisively in late 2010, when the proposer devised the “efficient congruencing” method. As a result, mean value estimates associated with translation invariant systems are now within a whisker of the main conjectures. Very significant progress has resulted in such Diophantine applications as Waring's problem, the validity of the Hasse principle for systems of diagonal equations, and equidistribution of polynomial sequences mod 1.
It is little understood in the wider community that efficient congruencing offers a fundamentally new approach to estimating moments of Fourier coefficients of wide generality, with hitherto inaccessible applications. We propose:
(i) to generalise efficient congruencing to approximately translation invariant systems, and explore consequent applications to Diophantine problems such as Waring's problem, restriction problems from discrete Fourier analysis, and bounds for the Riemann zeta function within the critical strip;
(ii) to extend the method to the multidimensional setting relevant to the investigation of local-global principles for spaces of rational morphisms from rational curves to diagonal hypersurfaces;
(iii) to explore the application of efficient congruencing over function fields where the ground field is a finite field, in particular as a vehicle for establishing estimates of use in randomness extractors;
(iv) to investigate the potential use of higher degree translation invariance in generalising Gowers norms.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences mathematics pure mathematics mathematical analysis fourier analysis
- natural sciences computer and information sciences computer security cryptography
- natural sciences computer and information sciences computational science
- natural sciences mathematics pure mathematics arithmetics L-functions
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-AdG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
BS8 1QU Bristol
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.