Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

FeREDCOUPLS - Reduced Iron Catalysts for Reduction and Coupling Reactions

Objective

The aerobic conditions on our planet enable the accumulation of oxidized matter whereas reduced chemicals are the most valuable energy carriers. Future shortages of energy-rich resources make efficient reductive transformations one of the greatest scientific challenges. To address this societal, economic and environmental demand, we propose new approaches to the design and application of stabilized iron catalysts. Our endeavour exploits the higher reducing power of Fe (vs. noble metals) in challenging reductive transformations and capitalizes on the high sustainability of Fe catalysis over noble metal technologies.
The use of low-valent Fe catalysts, the realization of new catalytic reactions and their mechanistic understanding will only be possible through the controlled generation and effective stabilization of reduced Fe species and active nanoparticles. Major emphasis will be placed on coordinative ligand/solvent systems which accommodate electron-rich Fe centers (olefins, arenes, Lewis acids, redox-ligands, ionic liquids). We address new approaches to the synthesis of low-valent Fe complexes and bottom-up/top-down preparations of Fe(0) nanoparticles. Catalytic reactions of high relevance to the manufacture of chemicals and materials will be studied (reduction, cross-coupling, hydrogenation, defunctionalization) with special emphasis on cheap abundant substrates. Mechanistic studies aim at understanding Fe-centered reductive bond activations and ligand co-operation. The proposed use of the most abundant transition metal for challenging reductive processes under practical conditions extends beyond the realm of synthesis, catalysis, and materials into spectroscopy, solvent technologies and reaction processing with direct relevance to sustainable chemicals and energy production. Our multidisciplinary program will provide new sets of active iron catalysts for reductive processes and is a major puzzle piece toward a greener chemical synthesis.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-CoG

See all projects funded under this call

Host institution

UNIVERSITY OF HAMBURG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 645 184,48
Address
MITTELWEG 177
20148 Hamburg
Germany

See on map

Region
Hamburg Hamburg Hamburg
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 645 184,48

Beneficiaries (2)

My booklet 0 0