Objective
Light fields technology holds great promises in computational imaging. Light fields cameras capture light rays as they interact with physical objects in the scene. The recorded flow of rays (the light field) yields a rich description of the scene enabling advanced image creation capabilities from a single capture. This technology is expected to bring disruptive changes in computational imaging. However, the trajectory to a deployment of light fields remains cumbersome. Bottlenecks need to be alleviated before being able to fully exploit its potential. Barriers that CLIM addresses are the huge amount of high-dimensional (4D/5D) data produced by light fields, limitations of capturing devices, editing and image creation capabilities from compressed light fields. These barriers cannot be overcome by a simple application of methods which have made the success of digital imaging in past decades. The 4D/5D sampling of the geometric distribution of light rays striking the camera sensors imply radical changes in the signal processing chain compared to traditional imaging systems.
The ambition of CLIM is to lay new algorithmic foundations for the 4D/5D light fields processing chain, going from representation, compression to rendering. Data processing becomes tougher as dimensionality increases, which is the case of light fields compared to 2D images. This leads to the first challenge of CLIM that is the development of methods for low dimensional embedding and sparse representations of 4D/5D light fields. The second challenge is to develop a coding/decoding architecture for light fields which will exploit their geometrical models while preserving the structures that are critical for advanced image creation capabilities. CLIM targets ground-breaking solutions which should open new horizons for a number of consumer and professional markets (photography, augmented reality, light field microscopy, medical imaging, particle image velocimetry).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences artificial intelligence machine learning supervised learning
- natural sciences computer and information sciences artificial intelligence computer vision facial recognition
- natural sciences computer and information sciences artificial intelligence machine learning unsupervised learning
- natural sciences physical sciences optics microscopy super resolution microscopy
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-AdG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
78153 Le Chesnay Cedex
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.