Objective
Hydrogen is the simplest and most abundant element in the universe. It exists under extreme conditions in stars and planets. Nuclear fusion, requires creating such extreme temperature and pressure on earth. Lightweight storage of hydrogen in condensed form would unleash its potential as a fuel. The behaviour of a collection of protons and electrons presents an iconic challenge in fundamental physics.
Diamond anvil cells (DAC) recently generated pressures above 400GPa, accessing conditions where the mechanical work of compression equals the chemical bonding energy. Most elements undergo dramatic structural changes in this regime, and rival predictions for hydrogen include molecular and atomic metals, superfluidity, superconductivity and one-dimensional melting. Yet when the new phase IV was discovered in 2011, it was none of these things: it was a totally unexpected complex molecular insulator. At these conditions experimental data is sparse: we must exploit it to the fullest extent, yet previous theoretical work has concentrated on routine density functional theory (DFT) simulation producing unmeasurable predictions. I will conduct a programme combining neutron scattering and Raman spectroscopy with theory and simulation focused on measurable quantities. This will require developing and implementing heuristic theories which do not currently exist.
I will develop methods to find free energy, theory to extract Raman frequencies and linewidths from simulation, and techniques to determine the signature from entanglement of quantum rotors. This requires a thorough re-examination of the quantum scattering processes in the framework of DFT, including the interaction timescale and in metals, and a full quantum treatment of indistinguishable nuclei.
Thus HECATE will be uniquely placed not only to produce new phases of hydrogen, but to reliably identify what has been found.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-AdG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
EH8 9YL Edinburgh
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.