Objective
The emergence of intelligence –the ability to remember and analyze data to make decisions– was a milestone in evolution. Intelligence and memory are usually associated with plastic neuronal connections in higher organisms. However, new discoveries hint that a rudimentary form of intelligence is rooted in networks that regulate gene expression in a wide range of organisms, including bacteria and yeasts. Specifically, we and others have shown that microbes show plastic behavioral responses to past experiences, such as previously available nutrients or stresses. This implies that information about the past is somehow retained and passed to next generations, where it influences cellular regulation.
The goal of this project is to use a simple eukaryotic regulatory circuit as a model to obtain a comprehensive picture of the different genes and molecular mechanisms underlying history-dependence (hysteresis) in cellular regulation. Specifically, we will study maltose (MAL) regulation in budding yeast, because this signaling pathway serves as a model for gene regulation circuits in other organisms, including humans. We will use a combination of genetic screens, live-cell microscopy in custom-built microfluidic devices, and mathematical modeling to pursue four aims:
1. To provide a comprehensive quantitative analysis of hysteresis in MAL regulation
2. To unravel the molecular mechanisms contributing to hysteresis
3. To unravel the epigenetic mechanisms allowing hysteresis to extend over several generations
4. To characterize the ecological relevance of hysteresis
This project will establish an innovative model for hysteresis and generate a genome-wide, systems-level view of how past influences can be stored in regulatory cascades to influence cellular decision-making. The results will contribute to a paradigm shift in our view of biological regulation and memory, with possible applications in fields as diverse as industrial microbiology, synthetic biology and medicine.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences synthetic biology
- natural sciences biological sciences genetics epigenetics
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
9052 ZWIJNAARDE - GENT
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.