Objective
This project addresses the development of novel theoretical and computational tools that utilize the quantum nature of light to understand and control quantum phenomena in complex systems in and out of equilibrium. Some examples of these processes include exciton-exciton interaction, quantum coherence, assisted energy and charge transport, photochemistry, and new states of matter.
The present project aims to build up the basic theoretical and computational machinery to allow quantum computations of the electronic and ionic dynamics of atomic, molecular or extended systems coupled to quantised electromagnetic fields and thereby set the stage for a new era in the first-principle computational modelling of light-matter interactions. To achieve this goal, we will combine the principles of time-dependent density functional theory (TDDFT) and quantum electrodynamics (QED) into a new quantum electrodynamical-DFT approach named as “QEDFT”.
Insight, design and control define the scientific rationale of the project, which will focus on the discovery of the general principles that describe and control systems far from equilibrium and orchestrate the behavior of many electrons and atoms to create new phenomena/states of matter. Besides developing and implementing the new theory of QEDFT, we will investigate atoms and molecules with quantum optical fields; whether and how selected laser pulses drive molecules and solids into new states of matter that have no equilibrium counterpart. What happens when it enters these coherent states? The objective is to identify the spectroscopic fingerprint of those new states. Which states arise in the strong light-matter coupling regime? e.g. hybridized states such as photon bound states, exciton/plasmon-polariton states, so far still undiscovered states. The long-term goal is to deliver an all-out theoretical and computational toolbox for QED-TDDFT applicable to complex molecular systems (like presently approachable by DFT and by TDDFT).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences electromagnetism and electronics electromagnetism
- natural sciences physical sciences theoretical physics particle physics fermions
- natural sciences chemical sciences physical chemistry photochemistry
- natural sciences physical sciences optics laser physics ultrafast lasers
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-AdG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.