Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Supernova dust: production and survival rates

Objective

The dust content of galaxies is dominated by silicate and carbon grains, whose origin is the subject of much debate - are the dust grains provided mainly by red giant stars, by supernovae from massive stars, or can they grow in the interstellar medium itself from stardust seeds? My team's recent observations with Herschel of three supernova remnants, Cas A, SN 1987A and the Crab Nebula, have provided direct evidence that supernovae from massive stars can form dust masses in the range of 0.1-0.8 solar masses per event, a level at which dust evolution models for high and low redshift galaxies predict that supernovae can become the dominant contributors of dust. With both O-rich and C-rich shells, core-collapse supernovae can make both silicate and carbon particles, as observed. Most of SN 1987A's current dust mass of 0.6-0.8 solar masses appears to have been grown between 3 and 25 years after outburst, a period that is currently poorly observed for other remnants. To build on and to extend these results beyond our initial sample of three core-collapse objects, dust masses will be measured for a much larger sample of late-epoch (3-50 yrs post-outburst) supernova remnants. This will be done by using a new Monte Carlo line transfer code to model red-blue line profile asymmetries observed in 8m telescope optical spectra to derive dust masses at a range of epochs, and via JWST mid-infrared observations of SN dust emission as the dust cools. We will extend our dust and gas emission modelling code to include dust heating not just by radiation but also by particle impacts, in order to determine accurate dust masses for collisionally ionized supernova remnants covered by Herschel surveys of the Magellanic Clouds and Milky Way. The theory programme will also determine grain lifetimes against destruction by supernova remnant reverse shocks, accounting for shielding in clumps, as well as destruction lifetimes for dust in circumstellar shells impacted by supernova blast waves.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-AdG

See all projects funded under this call

Host institution

UNIVERSITY COLLEGE LONDON
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 498 535,00
Address
GOWER STREET
WC1E 6BT London
United Kingdom

See on map

Region
London Inner London — West Camden and City of London
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 498 535,00

Beneficiaries (1)

My booklet 0 0