Objective
Reactive transport modelling is a key tool in understanding the extremely complex interplay of flow, transport and reactions occurring over various temporal and spatial scales in the subsurface. The most difficult challenge in reactive transport is the capture of scale dependence, and upscaling reactive transport will ultimately only be successful if there is a detailed understanding of fundamental mechanisms at the pore level and the supporting data are available. State-of-the-art tools (e.g. X-ray microtomography and on-chip porous media) are not sufficient to understand reactive flow, as they do not provide real-time mapping of propagation of fronts (e.g. temperature, pressure, concentration) that are critical to refine and validate simulations.
The ambition is to progress beyond the state of the art via additive manufacturing tools to print 3D replicas of porous cores that enable monitoring the properties within the pores. Our unique approach is to develop for the first time three-dimensional instrumented replicas of porous structures, so we can gain much needed dynamic data at the pore scale that can be incorporated into validated simulations coupling flow and reactive transport processes.
We combine expertise and integrating ground-breaking work in: (i) additive manufacturing to produce three dimensional replicas of porous structures; (ii) tools to embed sensors to determine in-vivo propagation of fronts (pressure, temperature, pH) within complex structures; and (iii) novel high-fidelity in-silico pore models coupling relative permeability functions and critical saturations with compositional changes and validated using virtual reality tools. The ERC MILEPOST project will transform our ability to analyse and predict the behaviour of a wide range of pore-scale processes governing the macroscopic behaviour of complex subsurface systems and open up new horizons for science in other areas, e.g porosity controlled in polymers and bioprinting.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences organic chemistry hydrocarbons
- engineering and technology materials engineering
- natural sciences physical sciences optics laser physics ultrafast lasers
- natural sciences physical sciences optics laser physics pulsed lasers
- engineering and technology mechanical engineering manufacturing engineering additive manufacturing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-AdG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
EH14 4AS Edinburgh
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.