Objective
The use of advanced methods to solve practical and industrially relevant problems by computers has a long history. Whereas Symbolic Computation is concerned with the algorithmic determination of exact solutions to complex mathematical problems, more recent developments in the area of Satisfiability Checking tackle similar problems but with different algorithmic and technological solutions.
Though both communities have made remarkable progress in the last decades, they still need to be strengthened to tackle practical problems of rapidly increasing size and complexity. Their separate tools (computer algebra systems and SMT solvers) are urgently needed to examine prevailing problems with a direct effect to our society. For example, Satisfiability Checking is an essential backend for assuring the security and the safety of computer systems. In various scientific areas, Symbolic Computation enables dealing with large mathematical problems out of reach of pencil and paper developments.
Currently the two communities are largely disjoint and unaware of the achievements of each other, despite strong reasons for them to discuss and collaborate, as they share many central interests. However, researchers from these two communities rarely interact, and also their tools lack common, mutual interfaces for unifiying their strengths. Bridges between the communities in the form of common platforms and roadmaps are necessary to initiate an exchange, and to support and to direct their interaction. These are the main objectives of this CSA. We will initiate a wide range of activities to bring the two communities together, identify common challenges, offer global events and bilateral visits, propose standards, and so on.
We believe that these activities will initiate cross-fertilisation of both fields and bring mutual improvements. Combining the knowledge, experience and the technologies in these communities will enable the development of radically improved software tools
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- humanities history and archaeology history
- natural sciences mathematics pure mathematics algebra
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
CSA - Coordination and support action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2014-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
BA2 7AY BATH
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.