Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Mechanobiology of Bovine Reproduction

Objective

The global demand for dairy products is expected to surge by 36% over the next decade in a manner that is progressively insatiable by existing technologies. The dairy industry relies on bovine reproduction, yet cow fertility is declining and the exact causes are not fully understood. It is clear, however, that the quality of bovine oocytes is decreasing.

In mammals, the ovarian reserve of oocytes stored within quiescent primordial follicles is non-renewable. Oocyte develop and mature within distinctive follicular microenvironments under tightly regulated molecular and physical conditions. Similarly, preimplantation embryo development is supported within a specialized microenvironment that is surrounded by the zona pellucida and insulated from external soluble and mechanical inputs. Characterizing and understanding these environments and how they affect reproductive processes is a key toward improving assisted reproductive technologies in bovine species.

Our premise is that molecular characterization of endocrine and paracrine signalling pathways must be complemented with understanding the mechanical regulation of reproductive biology. This premise is supported by recent finding showing that physical stresses and the mechanical compliance of the extracellular surroundings serve as potent regulators of cell fates in regeneration processes, development, and disease.

I propose to employ a biophysical and computational toolbox to study the mechanobiology of reproduction with application to bovine embryo-based technologies. By mimicking the mechanical properties of the ovarian cortical niche, which I will characterize using freshly derived ovaries, I will design an in vitro system for supporting follicle growth. Mechanical profiling of the entire developmental course from oocyte maturation to preimplantation embryogenesis will generate mechanistic insights into the physical regulation of reproductive processes.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-STG

See all projects funded under this call

Host institution

THE HEBREW UNIVERSITY OF JERUSALEM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 500 000,00
Address
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 500 000,00

Beneficiaries (1)

My booklet 0 0