Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Multi-scale analysis of the interplay between cell morphology and cell-cell signaling

Objective

Signaling, genetic regulatory circuits, and tissue morphology are inherently coupled to each other during embryonic development. Although changes in cellular and tissue morphology are commonly treated as a downstream consequence of cell fate decision processes, there are multiple examples where morphological changes occur concurrently with the differentiation processes. This suggests that a feedback between cell morphology and regulatory processes can play an important role in coordinating tissue development. Currently, however, we lack the experimental, theoretical, and conceptual tools to understand this interplay between cell morphology, signaling, and regulatory circuits. In particular, we need to understand (1) how intercellular signaling depends on the cellular morphology and on the properties of the boundary between cells, and (2) how intercellular signaling, genetic circuits, and cell morphology integrate to generate robust differentiation patterns. Here, I propose to combine quantitative in-vitro and in-vivo experiments with mathematical modeling to address these questions in the context of Notch signaling and Notch mediated patterning, typically used for coordinating differentiation between neighboring cells during development. We will utilize novel reporters and micropatterning technology to analyze Notch signaling between pairs of cells. We will elucidate how the geometry and the molecular composition of the boundary between cells affect signaling. At the tissue level, we will study how the interplay between cell morphology and Notch signaling gives rise to robust patterning in the mammalian inner ear. We will use cochlear inner ear explant imaging to track the transition from disordered undifferentiated state to ordered pattern of hair and supporting cells in the cochlea. Together with a novel hybrid modeling approach, we will provide the foundation for a systems level understanding of development that interconnects morphology and regulatory circuits.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-CoG

See all projects funded under this call

Host institution

TEL AVIV UNIVERSITY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 000 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 000 000,00

Beneficiaries (1)

My booklet 0 0