Objective
The next generation water electrolysers must achieve better dynamic behaviour (rapid start-up, fast response, wider load and temperature ranges) to provide superior grid-balancing services and thus address the steep increase of intermittent renewables interfaced to the grid. The HPEM2GAS project will develop a low cost PEM electrolyser optimised for grid management through both stack and balance of plant innovations, culminating in a six month field test of an advanced 180 (nominal)-300 kW (transient) PEM electrolyser. The electrolyser developed will implement an advanced BoP (power tracking electronics, high efficiency AC/DC converters, high temperature ion exchange cartridges, advanced safety integrated system, new control logic) and improved stack design and components (injection moulded components, flow-field free bipolar plates, Aquivion® membranes, core-shell/solid solution electrocatalysts). Several strategies are applied to lower the overall cost, thus enabling widespread utilisation of the technology. These primarily concern a three-fold increase in current density (resulting in the proportional decrease in capital costs) whilst maintaining cutting edge efficiency, a material use minimisation approach in terms of reduced membrane thickness whilst keeping the gas cross-over low, and reducing the precious metal loading. Further, improving the stack lifetime to 10 years and a reduction of the system complexity without compromising safety or operability. All these solutions contribute significantly to reducing the electrolyser CAPEX and OPEX costs. HPEM2GAS develops key technologies from TRL4 to TRL6, demonstrating them in a 180-300 kW PEM electrolyser system in a power-to-gas field test; delivers a techno-economic analysis and an exploitation plan to bring the innovations to market. The consortium comprises a system integrator, suppliers of membranes, catalysts and MEAs, a stack developer, an independent expert on standardization and an end-user.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power distribution
- engineering and technology environmental engineering energy and fuels renewable energy wind energy
- engineering and technology environmental engineering energy and fuels fuel cells
- engineering and technology environmental engineering energy and fuels renewable energy hydrogen energy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.3.8.2. - Increase the energy efficiency of production of hydrogen mainly from water electrolysis and renewable sources while reducing operating and capital costs, so that the combined system of the hydrogen production and the conversion using the fuel cell system can compete with the alternatives for electricity production available on the market
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
FCH2-RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-JTI-FCH-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.