Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Flexible Hybrid separation system for H2 recovery from NG Grids

Objective

The key objective of the HyGrid project is the design, scale-up and demonstration at industrially relevant conditions a novel membrane based hybrid technology for the direct separation of hydrogen from natural gas grids. The focus of the project will be on the hydrogen separation through a combination of membranes, electrochemical separation and temperature swing adsorption to be able to decrease the total cost of hydrogen recovery. The project targets a pure hydrogen separation system with power and cost of < 5 kWh/kgH2 and < 1.5 €/kgH2. A pilot designed for 25 kg/day of hydrogen will be built and tested.

To achieve this, HyGrid aims at developing novel hybrid system integrating three technologies for hydrogen purification integrated in a way that enhances the strengths of each of them: Membrane separation technology is employed for removing H2 from the “low H2 content” (e.g. 2-10 %) followed by electrochemical hydrogen separation (EHP ) optimal for the “very low H2 content” (e.g. <2 %) and finally temperature swing adsorption (TSA) technology to purify from humidity produced in both systems upstream. The objective is to give a robust proof of concept and validation of the new technology (TRL 5) by designing, building, operating and validating a prototype system tested at industrial relevant conditions for a continuous and transient loads. To keep the high NG grid storage capacity for H2, the separation system will target the highest hydrogen recovery.

The project will describe and evaluate the system performance for the different pressure ranges within 0.03 to 80 bar (distribution to transmission) and test the concept at pilot scale in the 6-10 bar range.

HyGrid will evaluate hydrogen quality production according to ISO 14687 in line not only with fuel cell vehicles (Type I Grade D) but also stationary applications (Type I Grade A) and hydrogen fueled ICE (Type I grade E category 3).

A complete energy and cost analysis will be carried out in detail.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

  • H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy MAIN PROGRAMME
    See all projects funded under this programme
  • H2020-EU.3.3.8.3. - Demonstrate on a large scale the feasibility of using hydrogen to support integration of renewable energy sources into the energy systems, including through its use as a competitive energy storage medium for electricity produced from renewable energy sources
    See all projects funded under this programme

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

FCH2-RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-JTI-FCH-2015

See all projects funded under this call

Coordinator

TECHNISCHE UNIVERSITEIT EINDHOVEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 460 110,00
Address
GROENE LOPER 3
5612 AE Eindhoven
Netherlands

See on map

Region
Zuid-Nederland Noord-Brabant Zuidoost-Noord-Brabant
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 780 110,00

Participants (8)

My booklet 0 0