Objective
Bacteria play a critical role in the life of higher organisms. Their behavior is constrained by the physical properties of their habitat: first and foremost, the presence of a surrounding fluid. Most bacteria are motile, and most motile bacteria swim in fluids using slender helical appendages called flagella rotated by specialized motors. While many bacteria have only one flagellum, most well-studied pathogenic bacteria possess multiple flagella. Why have some bacteria evolved to use many flagella when others survive with one? In order to answer this question, one needs to understand quantitatively how multiple flagella provide a fitness advantage to a cell exploring its environment. The principal difficulty in deriving rigorous models for swimming bacteria lies in the {nonlinear} nature of the underlying external physics, which involves nonlocal hydrodynamic interactions between flagella, short-range steric and electrostatic interactions, and elastic deformations of the flagella, which not only bend and twist but also undergo conformational changes. In this project, we will develop novel experimentally-testable theoretical modeling of the configurations and regimes relevant to swimming bacteria with multiple flagella with a focus on the mechanical forces at play. As a fundamental departure with past work, we will seek to exploit the slenderness and relative proximity of the flagella to incorporate all nonlocal hydrodynamic interactions between flagella analytically and to simplify the determination of elastic stresses. This will allow us, in turn, to determine precisely the distribution of flagellar forces and derive a predictive framework for the stochastic behavior of swimming cells. The project will provide first-principle understanding of the external forces at play in one of the most important processes in biology and will help answer a number of outstanding physical questions on the behavior of swimming bacteria and the interactions with their environment.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences microbiology virology
- natural sciences mathematics pure mathematics geometry
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN Cambridge
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.