Objective
This 3SST2015 project is aimed at supporting the emergence of a European SST service built on a network of existing SST assets, notably sensors (radar, laser and telescopes) owned by SST Consortium Member States. This will require the commitment of Consortium Member States owing relevant assets to cooperate and provide an anti-collision, fragmentation and re-entry service at European level in order to increase the autonomy of Europe concerning the operational objectives derived from the SST decision, which will be partially fulfilled by the operation of the initial European SST system.
Given that this system is mainly based on national systems, at the initial stage many of the activities will be based at national level. At the same time, and in order to achieve the convergence within a joint action that will allow the minimum desirable level of performance, an appropriate degree of coordination between SST Consortium Member States is needed.
The project is following a shared working approach between the key players within the field of SST in Europe. Following the guidelines given by the implementing decision of the European Commission (C(2014)6342 final of the 12.09.2014) the backbone of the planned activity is formed by a set of SST committees forming the decision platform of the SST Consortium, composed of the five designated national entities in cooperation mechanisms with the EU SatCen.
Three Committees are foreseen for the governing structure of the SST Consortium: the Steering Committee as the decision platform, the Technical Committee as the professional motor and to the Security Committee dealing with bi- and multilateral aspects of security constraints and issues.
The main activities are addressed in terms of: Performance assessment and architecture of SST, an SST Action Plan” and the Priority upgrading of existing sensors owned by the Member States member of the SST consortium.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsradio technologyradar
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencesphysical sciencesopticslaser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Topic(s)
Funding Scheme
CSA - Coordination and support actionCoordinator
00133 Roma
Italy