Objective
We propose a simple idea: to reproduce earthquakes in the laboratory. Because earthquakes are spectacular examples of uncontrollable catastrophes, the opportunity to study them under controlled conditions in the laboratory is unique and is, in fact, the only way to understand the details of the earthquake source physics.
The aim of the project is interdisciplinary, at the frontiers between Rock Fracture Mechanics, Seismology, and Mineralogy. Its ultimate goal is to improve, on the basis of integrated experimental data, our understanding of the earthquake source physics. We have already shown that both deep and shallow laboratory earthquakes are not mere `analogs’ of earthquakes, but are real events – though very small [Passelègue et al. 2013, Schubnel et al. 2013]. During laboratory earthquakes, by measuring all of the physical quantities related to the rupturing process, we will unravel what controls the rupture speed, rupture arrest, the earthquake rupture energy budget, as well as the common role played by mineralogy in both shallow and deep earthquakes. We will also perform some experiments on rock samples drilled from actual active fault zones. Our work will provide insights for earthquake hazard mitigation, constrain ubiquitously observed seismological statistical laws (Omori, Gutenberg-Richter) and produce unprecedented data sets on rock fracture dynamics at in-situ conditions to test seismic slip inversion and dynamic rupture modelling techniques.
The new infrastructure we plan to install will reproduce the temperatures and pressures at depths where earthquakes occur in the crust as well as in the upper mantle of the Earth, with never achieved spatio-temporal imaging resolution to this day. This will be a valuable research asset for the European community, as it will eventually open the door to a better understanding of all the processes happening under stress within the first hundreds of kilometres of the Earth.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences earth and related environmental sciences geology lithology
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- natural sciences earth and related environmental sciences geology seismology plate tectonics
- natural sciences earth and related environmental sciences geology mineralogy
- social sciences law
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.