Objective
NMDA receptors (NMDARs) have long fascinated neuroscientists with their distinct biophysical properties and critical roles in neuronal communication and plasticity. Recent studies have revealed that these glutamate-gated ion channels are more complex than initially thought, undergoing tight subunit-specific regulation by an array of endogenous modulators and existing as multiple subtypes, each with its own anatomical, functional and signaling properties. Such complexity raises key questions regarding the conformational changes that this multi-domain receptor undergoes, the physiological relevance of its subunit plurality and the microenvironment’s impact on receptor and circuit function. To address these challenges, this project uses innovative strategies at the crossroads of protein engineering, biological chemistry and neuroscience to achieve a molecular level control of NMDARs that is subunit-specific, reversible and usable both in vitro and in vivo. Using a bottom-up approach, it contains four aims covering molecular, cellular and behavioral levels. The first two investigate NMDAR structural mechanisms and exploit this knowledge to develop new optochemical receptor tools. The next two address physiological questions using these tools as well as original biosensors and novel mouse lines.
Aim 1: Characterize NMDAR conformational dynamics and allosteric transitions
Aim 2: Engineer a family of light-controlled NMDARs (‘Opto-allostery’)
Aim 3: Understand the role of specific NMDAR populations in neuronal functions
Aim 4: Explore the receptor’s synaptic microenvironment in normal and disease states
This multi-scale project creates and implements the spatially and temporally sensitive tools required to break the barriers to our understanding of NMDAR diversity and modulation. The results will provide fundamental insights into the intricate workings of an essential class of brain receptors and further our comprehension of neuronal excitatory transmission and pathology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
- natural sciences biological sciences genetics
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences chemical sciences organic chemistry amines
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-AdG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75654 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.