Objective
Self-propelling, i.e. active colloidal particles constitute a novel class of non-equilibrium systems which exhibit structural and dynamical features similar to those in assemblies of bacteria or other motile organisms. Due to their reduced complexity, they provide an intriguing chance to understand the formation of dynamical structures in non-equilibrium systems in unprecedented detail. A central question in this rapidly growing field is, how interaction-rules determine the creation of e.g. swarms or complex networks. In addition to ordinary inter particle and hydrodynamic forces, interaction-rules can be much more complex. For example, they can regulate the particle motility depending on their relative orientation, their local density or otherwise distinct particle configurations.
Here, we propose an experimental approach which aims towards controlling the amplitude and direction of the particle’s motility in dense active suspensions on a single particle level. Particle-propulsion is achieved by a light-activated diffusiophoretic mechanism, where the particle motility is controlled by an incident light field. By means of an acoustic-optical modulator and a feed-back loop, we create dynamical and spatially-resolved light fields which depend on the current configuration of active particles and user-defined interaction rules. Because these rules are imposed externally and not by internal forces, this permits the experimental realization of a wide range of rules (linear, non-linear, and even non-reciprocal) in dense, two-dimensional active systems. We expect, that the experimental realization of user-defined interaction-rules largely extends our understanding how active matter can organize in dynamical structures. In addition, the perspective of enhanced control of active particles, as suggested within this proposal, will be of considerable importance for their use as autonomous micro robots which will deliver payloads in liquid environments.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences microbiology bacteriology
- natural sciences physical sciences condensed matter physics soft matter physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-AdG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
78464 Konstanz
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.