Objective
Replacement of petrochemistry-based transport fuels and bulk chemicals by industrial biotechnology requires cost-efficient microbial processes, whose feedstock-to-product conversion efficiencies approach theoretical maxima. For many products, such high efficiencies require anaerobic processes and, consequently, industrial microorganisms capable of robust anaerobic growth. Yeasts are robust micro-organisms but, with the notable exception of Saccharomyces species, they share an important limitation with most other eukaryotes: they cannot grow anaerobically.
Even Saccharomyces cerevisiae, the yeast responsible for industrial fuel ethanol production in large-scale anaerobic processes, requires sterols and unsaturated fatty acids (UFAs) for anaerobic growth. Depletion of these anaerobic growth factors deteriorates its fermentation performance. Several ethanol-producing, non-Saccharomyces species have highly attractive properties for industrial application, including a much higher thermotolerance and broader substrate range than S. cerevisiae. However, in addition to sterol and UFA synthesis, these yeasts have other, unidentified oxygen requirements. Unless the molecular basis for these oxygen requirements is elucidated, their huge potential for sustainable production of biofuels and chemicals cannot be accessed by industry.
This proposal addresses the fundamental scientific question why so many yeasts that can ferment sugars to ethanol are nevertheless unable to grow anaerobically. Moreover, by enabling anaerobic growth of non-Saccharomyces yeasts, it aims to build yeast platforms with unprecedented advantages for industrial biotechnology. The proposed innovative approach to these challenges integrates cutting-edge experimental techniques in quantitative physiology and comparative genomics of yeasts and anaerobic fungi, computational modelling, and synthetic-biology-assisted metabolic engineering of different yeast species.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences genetics
- engineering and technology industrial biotechnology metabolic engineering
- natural sciences biological sciences microbiology mycology
- natural sciences biological sciences biochemistry biomolecules lipids
- natural sciences chemical sciences organic chemistry alcohols
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-AdG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2628 CN Delft
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.