Project description
Deciphering superconductivity in cuprates
For almost three decades, the search for room-temperature superconductors has focused on cuprates, materials carrying currents without energy loss at temperatures up to 164 K. The Mott insulating phase, the anti-ferromagnetic order and the superconducting phase are crucial in understanding superconductivity in such materials. Recent experiments suggest a fourth factor, charge ordering, that could also be vital for superconductivity. The ERC-funded CHAMPAGNE project proposes that the relationship between charge ordering and superconductivity is protected by an emerging SU(2) symmetry, resulting in a simple and universal gap equation. The proposed research will refine the theoretical model for experimental comparisons and search for experimental signatures through collaboration with experimental groups. If successful, this theory could enhance understanding of anomalous superconductivity in cuprates.
Objective
For nearly thirty years, the search for a room-temperature superconductor has focused on exotic materials known as cuprates, obtained by doping a parent Mott insulator, and which can carry currents without losing energy as heat at temperatures up to 164 Kelvin. Conventionally three main players were identified as being crucial i) the Mott insulating phase, ii) the anti-ferromagnetic order and iii) the superconducting (SC) phase. Recently a body of experimental probes suggested the presence of a fourth forgotten player, charge ordering-, as a direct competitor for superconductivity. In this project we propose that the relationship between charge ordering and superconductivity is more intimate than previously thought and is protected by an emerging SU(2) symmetry relating the two. The beauty of our theory resides in that it can be encapsulated in one simple and universal “gap equation”, which in contrast to strong coupling approaches used up to now, can easily be connected to experiments. In the first part of this work, we will refine the theoretical model in order to shape it for comparison with experiments and consistently test the SU(2) symmetry. In the second part of the work, we will search for the experimental signatures of our theory through a back and forth interaction with experimental groups. We expect our theory to generate new insights and experimental developments, and to lead to a major breakthrough if it correctly explains the origin of anomalous superconductivity in these materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-AdG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.