Objective
Soft materials are irreplaceable in engineering applications where large reversible deformations are needed, and in life sciences to mimic ever more closely or replace a variety of living tissues. While mechanical strength may not be essential for all applications, excessive brittleness is a strong limitation. Yet predicting if a soft material will be tough or brittle from its molecular composition or structure relies on empirical concepts due to the lack of proper tools to detect the damage occurring to the material before it breaks. Taking advantage of the recent advances in materials science and mechanochemistry, we propose a ground-breaking method to investigate the mechanisms of fracture of tough soft materials. To achieve this objective we will use a series of model materials containing a variable population of internal sacrificial bonds that break before the material fails macroscopically, and use a combination of advanced characterization techniques and molecular probes to map stress, strain, bond breakage and structure in a region ~100 µm in size ahead of the propagating crack. By using mechanoluminescent and mechanophore molecules incorporated in the model material in selected positions, confocal laser microscopy, digital image correlation and small-angle X-ray scattering we will gain an unprecedented molecular understanding of where and when bonds break as the material fails and the crack propagates, and will then be able to establish a direct relation between the architecture of soft polymer networks and their fracture energy, leading to a new molecular and multi-scale vision of macroscopic fracture of soft materials. Such advances will be invaluable to guide materials chemists to design and develop better and more finely tuned soft but tough and sometimes self-healing materials to replace living tissues (in bio engineering) and make lightweight tough and flexible parts for energy efficient transport.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- social sciences media and communications graphic design
- natural sciences chemical sciences polymer sciences
- natural sciences physical sciences optics microscopy confocal microscopy
- engineering and technology chemical engineering chemical process engineering
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-AdG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.