Objective
Protocells are artificial mimics of cellular systems exhibiting some of the quintessential characteristics of living systems such as compartmentalization, replication and selective exchange of chemical species with the environment. Apart from enabling better understanding about the origin of life, protocells can also be perceived as micromachines which can be programmed to perform functions such as clinical diagnosis, drug delivery, remote sensing, environment detoxification, etc. The range of applications for protocells can be broadened by increasing their structural complexity which would enable complex functions. However, to date the structural complexity of protocellular models has been minimal. Eukaryotic cells are model systems for complexity with compartmentalization into membrane bound organelles interacting through selective exchange of metabolites resulting in complex chemical networks which make possible smart functions such as feedback regulation and homeostasis. No parallel of this hierarchical organization exists in protocell literature. The aim of this proposal is to address this issue by design and construction of multicompartmental protocell models capable of complex functions such as self-regulation, locomotion and light harvesting. The interaction between the various compartments will be enabled by constructing gates across their membranes using stimuli responsive polymers to allow compartments to activate pathways which can affect the function or metabolite level of another compartment, leading to self-regulation of function or metabolite levels in the protocell. It is in this regard that the previous expertise of the applicant (Dr. Pavan Kumar) in constructing gates to control the transport in nanochannels will be applied to the multi-disciplinary and cutting edge field of protocells in which the hosting group at the University of Bristol (under the leadership of Prof.Stephen Mann FRS) has made tremendous progress in the last few years.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental biotechnology bioremediation bioreactors
- engineering and technology environmental engineering energy and fuels renewable energy
- natural sciences physical sciences condensed matter physics soft matter physics
- natural sciences chemical sciences polymer sciences
- natural sciences chemical sciences catalysis biocatalysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
BS8 1QU BRISTOL
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.