Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Directed Protein Evolution for Synthetic Biology and Biocatalysis

Objective

ES-Cat will use directed evolution as a tool to reproduce Nature's remarkable ability to generate molecular machines - in particular enzymes – that perform at levels near perfection. Instead of seeing rational and combinatorial approaches as alternatives, we combine them in this network to achieve a ‘smarter’ and more efficient exploration of protein
sequence space. By harnessing the forces of Darwinian evolution and design in the laboratory we want to (i) screen large and diverse libraries for proteins with improved and useful functions, (ii) optimize existing proteins for applications in medicine or biotechnology and (iii) provide a better understanding of how existing enzymes evolved and how
enzyme mechanisms can be manipulated. This Network brings together leading academic and industrial groups with diverse and complementary skills. The range of methodologies represented in ES-Cat allows an integrated approach combining in silico structural and sequence analysis with experimental high-throughput screening selection methods (phage-, ribozyme and SNAP display, robotic liquid handling, lab-on-a-chip/microfluidics) with subsequent systematic kinetic and biophysical
analysis. This integration of methods and disciplines will improve the likelihood of success of directed evolution campaigns, shorten biocatalyst development times, and make protein engineering applicable to a wider range of industrial targets. It will also train the next generation of creative researchers ready to fill roles in tailoring enzymes and other proteins for industrial application in synthetic biology efforts to move towards a bio-based economy, rivaling advances that are being made in the US and allowing the EU economy to harvest its evident socio-economic benefits.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-ITN-ETN - European Training Networks

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-ITN-2016

See all projects funded under this call

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 273 287,88
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 273 287,88

Participants (9)

Partners (9)

My booklet 0 0