Objective
The continuously growing need for higher data-rates and, therefore, more signal bandwidth in wireless communications, requires the use of multi-antenna base stations employing the recently introduced massive Multiple-Input-Multiple-Output (MIMO) concept and operating at millimeter-wave frequencies, e.g. 30 GHz. However, the implementation of such complex antenna systems into highly-integrated, energy- and cost-effective solutions is very challenging. Therefore, we propose an innovative antenna system concept utilizing silicon semiconductor electronics that can generate or receive at millimeter-wave frequencies in order to truly expand wireless communications into the outer limits of radio technology. SILIKA establishes a training network with leading R&D labs from European industries, universities and technology institutes in the domain of wireless infrastructure. This will be achieved by a multi-disciplinary approach combining expertise in all required areas to create a breakthrough towards millimeter-wave multi-antenna systems for energy-efficient and low-cost base stations for 5G wireless infrastructure. In the SILIKA Graduate School we will train 12 ESRs with post-master level technical courses and industrial workshops which are complemented by several professional-skill training modules relevant for working in multi-disciplinary project teams. All ESRs will perform secondments in an industrial setting. The SILIKA consortium consists of key European players in the field of wireless infrastructure with a complementary field of expertise and with a proven track-record in joint collaborations. As a consequence, SILIKA will provide the ESRs with a comprehensive set of transferable skills relevant for innovation and long-term employability. The high level of participation of leading industries will ensure that the scientific results of SILIKA will be transferred to future products in the area of wireless infrastructure which will benefit the European economy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks mobile network 5G
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering signal processing
- natural sciences physical sciences astronomy observational astronomy radio astronomy
- natural sciences chemical sciences inorganic chemistry metalloids
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-ITN-EID - European Industrial Doctorates
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-ITN-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5612 AE Eindhoven
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.