Objective
The DREAM project aims to design, develop and demonstrate a radically improved architecture for ceramic industrial furnaces, characterised by optimised energy consumption, reduced emissions, and lower operating costs compared to currently available technological solutions. This will be obtained by substantially enhancing specific furnace parts (control system, refractories, emissions abatement system) and by adding new modules and sub-systems (CHP unit, heat pipes) to the current furnace architecture.
DREAM Specific objectives will be:
O1 – To design innovative hardware furnace components improving energy efficiency (biofuel-fed CHP unit, heat pipes, emission abatement system)
O2 – To introduce substantial improvements on current hardware-software kiln parts (kiln control tool, refractory materials)
O3 – To test the DREAM solutions in a variety of industrial settings (retrofitting and pilot kiln demonstrators)
O4 – To pave the way for a full seizure of DREAM related market opportunities (dissemination, exploitation within the ceramic sector and market replication)
DREAM will develop and demonstrate technologies enabling a significant advancement in the sustainability of ceramics processes, implementing 5 synergic lines of research and 3 industrial demonstrators, which will act as technological showcases for market deployment. Such approach will enable to advance, in the five lines of research, from TRL4 to TRL6.
DREAM will strongly contribute to both the sustainability and competitiveness of the European ceramics and process industries. In particular, the DREAM technologies will earn an overall 20% OPEX and energy consumption reduction for industrial furnaces, with an average investment payback time for end users lower than 3 years.
The DREAM coordinator and industrial partners are technology and market leaders in the ceramics equipment field, and this will streamline the translation of the DREAM research results into successful products and services.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control systems
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power generation combined heat and power
- engineering and technology environmental engineering energy and fuels fossil energy natural gas
- engineering and technology materials engineering ceramics
- engineering and technology industrial biotechnology biomaterials biofuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.5. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.5.3. - Sustainable, resource-efficient and low-carbon technologies in energy-intensive process industries
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-IND-CE-2016-17
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
40026 Imola Bo
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.