Objective
What are the origins of humans’ remarkable capacities to grasp, memorize, and produce complex sequences and rules, as manifested in language and mathematics? During its evolution, the human brain may have acquired a capacity to represent nested rules, based in part on the expansion of circuits involving the inferior frontal gyrus. This hypothesis will be tested using behavioral measures, functional MRI, magneto-encephalography (MEG), electro-corticography (ECOG) and machine learning techniques in human and non-human primates tested in identical paradigms.
(1) We will design a hierarchy of non-linguistic visual and auditory sequences that place increasing demands on abstract rule coding.(2) Behavioral studies of pointing time and eye tracking will investigate the memory for such sequences in human adults, children, and macaque monkeys, and their extrapolation to future items. (3) Functional MRI, MEG, and ECOG will probe the localization, time course, and neural coding of such non-linguistic sequences in human adults. (4) In the same subjects, we will investigate the representation of linguistic and mathematical structures and determine if they involve the same areas and coding principles. (5) We will also record fMRI and ECOG responses to this hierarchy of non-linguistic sequences in macaque monkeys, in search of both correspondences and sharp differences with humans. (6) The same non-linguistic materials will be used in fMRI and EEG studies of human children and infants. Our hypothesis predicts that human children may perform better than adult monkeys. (7) We will formulate and test mathematical models that propose that the human brain “compresses” incoming sequences using nested rules (Kolmogorov complexity), uses predictive codes to anticipate on future inputs, and encodes syntax via tensor-product representations.
The results will clarify the brain mechanisms of human language and abstraction abilities, and shed light on their ontogeny and phylogeny.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- humanities languages and literature general language studies
- natural sciences biological sciences neurobiology cognitive neuroscience
- natural sciences biological sciences neurobiology computational neuroscience
- natural sciences computer and information sciences artificial intelligence machine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-AdG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.