Objective
A longstanding problem in combustion research is that there is no means to simultaneously measure the temperature and velocity in high-temperature, chemically-reacting flows, which is essential to probe complex turbulence-chemistry interactions found in advanced combustion systems. The aim of this project is to solve this problem using a novel laser-based temperature-velocity imaging technique developed by the host organisation (Lehrstuhl für Technische Thermodynamik (LTT), Otto-von-Guericke Universität Magdeburg, Germany), which uses thermographic phosphor particles as a flow ‘tracer’. The primary objective of the action is to increase the measureable temperature range via synthesis of new phosphor particles optimised for flow temperature sensing. LTT will collaborate with the Advanced Combustion and Propulsion Lab (ACP), Princeton University, USA, who have developed innovative synthesis methods capable of producing phosphor particles with specific physical and optical properties. At ACP, the candidate fellow (LTT) will learn how to produce phosphors using these advanced methods, and then return to LTT where the new materials will be characterised and proven in flames. A laboratory for phosphor particle production and luminescence characterisation will be installed at LTT. The candidate fellow will develop unique, interdisciplinary expertise in thermographic phosphors, materials that will be at the forefront of future remote sensing technologies. The project will result in completely new measurement capabilities for fundamental and applied research, allowing the design of cleaner, fuel-efficient engines in key automotive, aerospace and power generation industries, thereby using fewer resources and reducing environmental impact. These novel materials will find use in lighting and display technologies and biological sensing, maximising both the impact of the action and opportunities for future collaboration with ACP and other EU research institutions and industry.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology environmental engineering remote sensing
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
39106 Magdeburg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.