Objective
The main objective of BigDataOcean is to enable maritime big data scenarios for EU-based companies, organisations and scientists, through a multi-segment platform that will combine data of different velocity, variety and volume under an inter-linked, trusted, multilingual engine to produce a big-data repository of value and veracity back to the participants and local communities.
BigDataOcean aims to capitalise on existing modern technological breakthroughs in the areas of the big data driven economy, and roll out a completely new value chain of interrelated data streams coming from diverse sectors and languages and residing on cross technology innovations being delivered in different formats (as well in different states, e.g. structured/unstructured, real-time/batches) in order to revolutionise the way maritime-related industries work, showcasing a huge and realistic economic, societal and environmental impact that is being achieved by introducing an economy of knowledge into a traditional sector which does not operate in an orchestrated manner and is rather fragmented. This infrastructure will be combined with four strong pilots that will bring into BigDataOcean a huge amount of data (in TBs) in order to develop the largest maritime database as a resource of collaborative, data-driven intelligence. BigDataOcean will give participants the capability to upload both private and public resources of data, and interrelate them over public and private queries and diagrams.
The BigDataOcean system backbone will be domain-agnostic and interoperable with the most popular and established data processing technologies and sensor types, and will be capable of conforming to various different operation systems that one can nowadays meet.
Based on the consortium’s early market analysis, the project will break even and will be viable from its start (2020) and will return the initial investment of EU-commission by 2025 (ROI).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
- natural sciences computer and information sciences data science big data
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology environmental engineering energy and fuels
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
157 72 ATHINA
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.