Objective
Guaranteed numerical precision of each elementary step in a complex computation has been the mainstay of traditional computing systems for many years. This era, fueled by Moore's law and the constant exponential improvement in computing efficiency, is at its twilight: from tiny nodes of the Internet-of-Things, to large HPC computing centers, sub-picoJoule/operation energy efficiency is essential for practical realizations. To overcome the “power wall”, a shift from traditional computing paradigms is now mandatory.
OPRECOMP aims at demolishing the ultra-conservative “precise” computing abstraction and replacing it with a more flexible and efficient one, namely transprecision computing. OPRECOMP will investigate the theoretical and practical understanding of the energy efficiency boost obtainable when accuracy requirements on data being processed, stored and communicated can be lifted for intermediate calculations. While approximate computing approaches have been used before, in OPRECOMP for the first time ever, a complete framework for transprecision computing, covering devices, circuits, software tools, and algorithms, along with the mathematical theory and physical foundations of the ideas will be developed that not only will provide error bounds with respect to full precision results, but also will enable major energy efficiency improvements even when there is no freedom to relax end-to-end application quality-of-results.
The mission of OPRECOMP is to demonstrate using physical demonstrators that this idea holds in a huge range of application scenarios in the domains of IoT, Big Data Analytics, Deep Learning, and HPC simulations: from the sub-milliWatt to the MegaWatt range, spanning nine orders of magnitude. In view of industrial exploitation, we will prove the quality and reliability and demonstrate that transprecision computing is the way to think about future systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences internet internet of things
- natural sciences computer and information sciences software
- agricultural sciences agriculture, forestry, and fisheries agriculture grains and oilseeds
- natural sciences computer and information sciences data science big data
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.2. - FET Proactive
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETPROACT-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8803 RUESCHLIKON
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.