Objective
For most biologically relevant molecules their chirality is decisive for their function. Within the last two decades asymmetric organo-catalysis has emerged as an environmental benign, metal-free alternative for conventional asymmetric transition metal catalysis. The organo-catalysts, which employ catalyst-substrate interaction motifs commonly found for enzymes, yield unprecedented enantiomeric excesses. Despite the success of these organo-chemical routes, remarkably little is known about the molecular details of the interaction between the catalyst and the substrate. Consequently, there is virtually no rationale method to optimize reaction conditions particularly as related to structure-function relationships. Also the exact nature of the intermediates that induce chirality has remained elusive. The aim of this proposal is to experimentally quantify the formation of reaction intermediates and the nature of intermediate induced chirality that lie at the heart of asymmetric control. This will be achieved by using a combination of advanced spectroscopic techniques. With advanced vibrational spectroscopies (ultrafast two-color and two-dimensional infrared spectroscopy), dielectric spectroscopy, and NMR spectroscopy together with quantum chemical calculations we will quantify structure-dependent interactions: binding geometry, strength of attraction, lifetime of binding, reaction intermediates, and the role of steric repulsion, probed on all timescales relevant to catalytic processes ranging from femtoseconds to seconds. Correlation of such information with the enantiomeric excess obtained in catalytic processes will allow isolating the essential ingredients for stereocontrol. Such molecular-level insights will provide fundamental parameters for optimization of reaction conditions and will initiate the transition from a trial and error approach towards a rational design of new catalytic processes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences optics spectroscopy absorption spectroscopy
- natural sciences chemical sciences catalysis
- natural sciences mathematics pure mathematics geometry
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.